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ABSTRACT: Recent developments in “headline-making” deep neural networks (DNNs), specifically convolutional neural
networks (CNNs), along with advancements in computational power, open great opportunities to integrate massive amounts
of real-time observations to characterize spatiotemporal structures of surface precipitation. This study aims to develop a
CNN algorithm, named Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP), that
ingests direct satellite passive microwave (PMW) brightness temperatures (Tbs) at emission and scattering frequencies
combined with infrared (IR) Tbs from geostationary satellites and surface information to automatically extract geospatial
features related to the precipitable clouds. These features allow the end-to-end Deep-STEP algorithm to instantaneously map
surface precipitation intensities with a spatial resolution of 4 km. The main advantages of Deep-STEP, as compared to current
state-of-the-art techniques, are 1) it learns and estimates complex precipitation systems directly from raw measurements in
near–real time, 2) it uses the automatic spatial neighborhood feature extraction approach, and 3) it fuses coarse-resolution
PMW footprints with IR images to reliably retrieve surface precipitation at a high spatial resolution. We anticipate our proposed
DNN algorithm to be a starting point for more sophisticated and efficient precipitation retrieval systems in terms of accuracy,
fine spatial pattern detection skills, and computational costs.
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1. Introduction

Clouds and precipitation are key components of Earth’s
hydrological cycle, yet there is a lack of deep understanding of
their physics and dynamics. Reliable cloud and precipitation
measurements are useful for understanding the current state of
the global water resource, as well as for determining the charac-
teristics of these processes over time and space (Funk et al.
2015; Behrangi et al. 2011; Boucher et al. 2013). In recent deca-
des, the availability of meteorological satellite technologies has
provided a remedy for the shortcomings of ground-based obser-
vations. These technologies have also brought a sustained
global-scale source of information that promotes high-resolu-
tion cloud detection and precipitation estimation more effi-
ciently and accurately (Sun and Tang 2020; Houze 2014).
Satellite precipitation retrieval schemes offer a diverse range of
applications from near-real-time high-resolution estimates for
flood warning systems and short-term weather predictions,
to long-term climate data for the monitoring of global trends
(Sorooshian et al. 2000; Damberg and AghaKouchak 2014;
Nguyen et al. 2016).

At the time of writing, the spaceborne atmospheric radars,
active microwave (AMW), have only been carried on a few

low-Earth-orbiting (LEO) satellites. Precipitation and cloud
radar technologies pioneered by the Precipitation Radar (PR)
on board the Tropical Rainfall Measuring Mission (TRMM)
satellite, and the Cloud Profiling Radar (CPR) on the CloudSat
satellite and further advanced by Dual-Frequency Precipitation
Radar (DPR) on the Global Precipitation Measurement
(GPM) mission Core Observatory (GPM-CO) satellite. These
AMW sensors provide high-quality and precise cloud and
precipitation features but are limited to narrow swath widths.
These observations are useful for climatological and event-
based investigations, and they can be used for calibration and
validation in the near-real-time cloud and precipitation retrieval
algorithms (Kidd and Levizzani 2011; Tang et al. 2017; Gou
et al. 2018). There are a variety of operational passive radio-
meters on geostationary/geosynchronous Earth orbit (GEO),
mostly cover the visible (VIS) and infrared (IR) portion of the
electromagnetic spectrum, flying on the international constella-
tion of meteorological satellites such as Advanced Baseline
Imager (ABI) on the U.S. Geostationary Operational Environ-
mental Satellite (GOES)-R series. High spatiotemporal and
spectral resolution data streams from GEO-based passive sen-
sors, with 0.5–4-km spatial resolution and 5–30-min global
refresh rates, meet the requirements for near-real-time monitor-
ing of cloud distributions and precipitation processes. However,
these measurements are mainly reliant on cloud-top properties
with limited information on the vertical structure of the
atmosphere, the precipitating cores of the clouds, and the
underneath precipitation-generating mechanisms. The current
operational LEO-based passive microwave (PMW) radiometers
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such as the international network of sensors in the GPM mission
(Hou et al. 2014) measure the upwelling radiation of the Earth’s
surface (brightness temperatures; Tb) in emission (,37 GHz)
and scattering channels (.37 GHz) (Kummerow 2020).
Although PMW imagers and sounders provide more direct
measurements for instantaneous precipitation estimation
compared to VIS/IR readings, their temporal resolutions
are far coarser than GEO-based radiometers. The existing
GEO and LEO satellite constellations are discussed in
detail by Kidd et al. (2021).

There are several space–time gridded satellite-based surface
precipitation products that are widely used by scientific
communities and operational engineering applications. Although
different research groups have been attempting to develop an
optimum algorithm for accurate and global-scale precipitation
estimation, the task remains elusive mostly because of the trade-
off between sampling frequency of VIS/IR, PMW, and AMW
sources of information. Depending on the final user, the repre-
sentation of precipitation phenomena also varies; hydrologists
mostly require the gridded dataset for the intensity and occur-
rence of “surface” precipitation, but atmospheric scientists are
more interested in characteristics of vertical profile values (Kidd
et al. 2018). Several precipitation retrieval algorithms primarily
deploy VIS/IR measurements as their main input such as the
widely used Precipitation Estimation from Remotely Sensed
Information Using Artificial Neural Networks–Cloud Classifi-
cation System (PERSIANN-CCS; Hong et al. 2004) and
PERSIANN Dynamic Infrared–Rain Rate (PDIR; Nguyen
et al. 2020). These algorithms predefine the cloud-top features
based on coldness, geometry, and texture, differentiating vari-
ous cloud types using an unsupervised classification technique
in order to link surface precipitation rates with IR brightness
temperatures (Tbs). Although IR-based algorithms provide
high-resolution spatiotemporal data about precipitation on a
quasi-global scale, and in near–real time, their performance is
limited to indirect relations between the tops of the cloud Tbs
(IR measurements) and surface precipitation rates. There also
exists some precipitation retrievals that utilize PMW reading as
their dominant input, such as the NASA’s Goddard profiling
algorithm (GPROF; Kummerow et al. 2015). The GPROF
algorithm retrieves both PMW-based instantaneous surface
precipitation and vertical rainfall structures, using a dictionary-
based Bayesian inversion method. An a priori database is gen-
erated which contains several million sets of PMW Tbs along
with associated surface rainfall and hydrometeor profiles, as
well as surface types, 2-m temperatures, and total precipitable
water (TPW). This database is subcategorized by temperature,
TPW, and 14 main surface type classes, defined over oceans
and various types of land surfaces. A conditional probabilistic
Bayesian scheme retrieves precipitation data by comparing sat-
ellite observations to radiances in the (appropriate) database.
In general, PMW-based precipitation retrievals are more accu-
rate than IR-based estimates, due to their reliance on direct
relations between PMW Tbs and vertical properties of atmo-
sphere and hydrometeors. However, these products are sparse
and less frequent when compared to IR retrievals. Also, precipi-
tation retrievals from spaceborne PMW rely on point-wise low-
resolution measurements without considering neighborhood

properties. The NASA Integrated Multi-satellitE Retrievals
for the GPM mission (IMERG) is one of the well-known
precipitation algorithms, utilizing intercalibrated PMW and
PMW-calibrated IR precipitation estimates with multiple
ancillary data to provide consistent global estimates in early,
late, and final runs (Huffman et al. 2020). The IMERG relies
on a combination of previously established satellite precipita-
tion algorithms. The orbital PMW precipitation retrievals
from the GPM constellation are mostly processed by the
GPROF algorithm. Then, they are merged with recalibrated
PERSIANN-CCS estimates using the Climate Prediction Cen-
ter (CPC) morphing–Kalman filter (CMORPH-KF; Joyce and
Xie 2011) quasi-Lagrangian time interpolation scheme. The
IMERG scheme requires a large number of variables, high
computational power, and data storage to derive half-hourly, 0.18
spatial resolution surface precipitation products (Skofronick-
Jackson et al. 2018).

There is a growing interest in using data-driven machine
learning techniques in a variety of studies such as hydrologic
modeling (Hsu et al. 2002; Yu et al. 2006; Raghavendra and
Deka 2014; Yaseen et al. 2015; Kratzert et al. 2019; Ardabili
et al. 2020; Hu et al. 2019; Jha and Sahoo 2015; Afzaal et al.
2019), climate modeling (O’Gorman and Dwyer 2018;
Krasnopolsky and Fox-Rabinovitz 2006; Rasp et al. 2018),
cloud detection and classification (Xie et al. 2017; Cai and Wang
2018; Jeppesen et al. 2019; Gorooh et al. 2020), precipitation
estimation and forecasting (Pan et al. 2019; Miao et al. 2019;
Xiao and Chandrasekar 1997; Behrangi et al. 2009; Kuligowski
and Barros 1998; Hsu et al. 1997; Akbari Asanjan et al. 2018),
and many more. Among the multitude of machine learning
methods, deep neural networks (DNNs) have provided the flexi-
bility necessary to analyze massive remotely sensed datasets.
Furthermore, DNNs have offered exciting opportunities to
lessen the limitations of pure, process-oriented physical mod-
els, and to address the relationship between nontrivial, lagged
long-distance, high-dimensional, and multiscale geophysical
variables (Reichstein et al. 2019). While neural network–based
approaches for precipitation estimation have come a long way
since early efforts at the turn of the twenty-first century,
understanding and making ultimate use of multisource remote
sensing data is ongoing.

One of the first attempts at deploying the neural networks for
precipitation estimation was the study conducted by Sanò et al.
(2016) using a combination of LEO-based PMW with multiple
auxiliary data as inputs to a two-layer pixel-wise neural network.
Tang et al. (2018) also presented a neural network to establish
relationships between precipitation data from merged space-
borne radars, PMW, IR, and environmental data, for high-
latitude regions. Chen et al. (2020) designed a deep multilayer
perceptron system to produce the rainfall information, using IR
data and PMW-based retrievals as inputs, for an urban-scale area
over the Dallas–Fort Worth metroplex. Pfreundschuh et al.
(2018) introduced quantile regression neural networks (QRNNs)
to estimate quantiles of the posterior distribution for PMW
Bayesian retrieval algorithms, such as GPROF. QRNNs miti-
gates the requirement of a lookup in a large retrieval database,
and it offers a simple integration of ancillary data into the surface
precipitation retrieval algorithms. Although these studies have
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shown satisfactory performance using multiple sources of infor-
mation for precipitation retrieval, the fully connected pixel-wise
structure of their algorithms establish relations between output
pixels (precipitation) and input pixels (satellite remotely sensed
information), which are insufficient for observing variations in
spatial neighborhoods. The importance of using nonlocal
approaches in satellite precipitation retrieval has been discussed
in detail by Foufoula-Georgiou et al. (2020). Tao et al. (2018)
utilized the Stacked Denoising Autoencoder (SDAE) to extract
cloud features from GEO-based IR imagery, and (Sadeghi et al.
2019) introduced convolutional neural network (CNN) algorithms
for deriving the surface precipitation from bispectral GEO
satellite imagery. Hayatbini et al. (2019) also introduced a data-
driven framework for near-real-time precipitation estimation
using conditional generative adversarial networks (cGANs) and
CNNs for multispectral information from GEO imagers. These
studies and many more (Z. Li et al. 2021; Moraux et al. 2019)
use state-of-the-art deep learning (DL) techniques to automati-
cally extract precipitation related features, but they are limited
to one type of remotely sensed dataset as input to their models
(e.g., solely IR or PMW or radar measurements). CNN archi-
tectures are a quickly growing branch of DNN, characterized by
their ability to automatically extract spatial features from raw
image data, as opposed to traditional machine learning
approaches that rely on “hand-crafted” features. CNNs use
convolutional transformation and learnable filters that
allow sharing weights across the spatial data. This is a
unique advantage of CNNs that in conjunction with pool-
ing operations increases the efficiency of neural networks
by reducing the number of hyperparameters in the model.
CNNs learn local neighborhood features as well as a large
field of view in images without requiring a huge amount of
training data. Based on this literature review, no study was
found that explores advanced and powerful CNNs using
raw spaceborne PMW and IR information (multisensor multisa-
tellite measurements) as inputs to derive high-resolution surface
rainfall estimates over a large area.

Our research reported in this manuscript is designed to
explore whether “end-to-end” DNNs are capable of mitigating
the aforementioned common weaknesses in satellite precipitation
products (e.g., imperfect data integration between PMW and IR
data) and the need for a large number of physical and environ-
mental variables in process-oriented precipitation retrieval algo-
rithms. It should be noted that end-to-end learning in DNNs
refers to training a complex learning system by one model that
bypasses the intermediate multistages usually present in tradi-
tional pipeline designs. The specific objectives of this study are 1)
to explore the potential of CNNs to develop an end-to-end high
spatial resolution near-real-time precipitation estimation frame-
work using spatial features related to precipitation from PMW
measurements combined with IR imageries and 2) to demon-
strate the capability of the developed DNN multisensor multisa-
tellite algorithm compared to well-known operational process-
oriented products such as IMERG and GPROF. In this paper,
we are focusing on developing a CNN-based satellite precipita-
tion retrieval algorithm using GPM Microwave Imager (GMI)
measurements combined with IR Tbs over the United States, as
a proof of concept.

2. Data sources

In this research several datasets are utilized for input,
calibration, benchmarking, and comparison of our DNN
model to operational products for precipitation estimation
purposes. These products come from a variety of sources,
including passive sensors on LEO and GEO satellite plat-
forms, ground-based radars each with its strengths and
weaknesses. The emphasis will be on the use of a combina-
tion of multiple satellite-based observational systems, and
the primary regional focus of the experiments will be over
the eastern contiguous United States (CONUS) and some
parts of North Atlantic Ocean near coastal regions
(1108–608W and 208–508N). Data sources used for this
study are detailed in the following subsections.

a. PMW information

In our study, the analysis relies on Tbs derived only from
GMI (L1CGMI version 5), as the proof of concept, which con-
tains two types of swaths (Draper et al. 2015; Hou et al. 2014)
with slightly different conical scanning geometries, swath S1
has a width of approximately 931 km and swath S2 has a width
of approximately 825 km. The distance between along-track
scans is about 13.5 km and along-scan pixel separation for low
and high frequencies are 5.7 and 5.1 km, respectively. Table 1
shows spatial resolution specifications for GPM-CO GMI, and
we can see low-frequency channels have larger fields of view
compared to high-frequency channels. Due to the coarse reso-
lution and channel availability of 10 GHz in the current GPM
constellation radiometers (frequencies less than 18-GHz bands
are only available from AMSR2 and GMI sensors) bands 1
and 2 are excluded from our experiments (for details, see Kidd
et al. 2021; Skofronick-Jackson et al. 2017).

b. IR images

The National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center (CPC) merged longwave
IR product at the half-hourly temporal and 4-km spatial reso-
lution is used for precipitation estimation purposes (Janowiak
et al. 2001). The CPC dataset is a combination of IR Tb
(∼10.7-mm central wavelengths) from several international
GEO-based satellites (e.g.,GMS-5,GOES-8,Meteosat-7).

c. Surface types

The values of Tool to Estimate Land Surface Emissivities
at Microwave Frequencies (TELSEM) surface class index is
used as ancillary inputs to our CNN algorithms. The surface
types are derived from monthly emissivity climatology and
are currently used in version 5 of the NASA Precipitation
Measurement Mission (PMM) GPROF algorithm (Prigent
et al. 2003; Aires et al. 2011). In the GPROF surface classifica-
tion scheme the surface types are numbered as ocean/large
inland water (1), sea ice (2), decreasing vegetation covered
(3–7), decreasing snow covered (8–11), inland water/rivers/
estuaries (12), coastlines (13), and ocean/sea ice boundary
(14). For detailed specifications of the surface classes used
GPROF algorithm see NASA (2018). In our investigations, to
allow the easier interpretation of the performance of the
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proposed model, the surface types are reformed in the way
that sea ice land and snow surface classes along with the sam-
ples with low confidence (quality flags equal to 2 or 3) are
excluded from our investigations.

d. Precipitation products

The National Severe Storms Laboratory (NSSL) Multi-
Radar Multi-Sensor (MRMS) is one of the most reliable and
high spatiotemporal resolution precipitation datasets over the
CONUS that is widely used in literature as reference data
(Zhang et al. 2016; Kirstetter et al. 2012, 2015). The WSR-88
Doppler radar data are integrated with more than 7000 gauge
observations, atmospheric environmental data, and satellite
data to generate MRMS quantitative precipitation products.
The half-hourly gauge-adjusted MRMS precipitation product
and the 2-min GPM Ground Validation MRMS (GV-MRMS)
precipitation rates with 0.018 spatial resolution, provided by
NASA Global Hydrology Resource Center (GHRC) Marshall
Distributed Active Archive Center (DAAC), are used as the
benchmarks for training and validation of our proposed models.
In our preliminary experiments, high-quality GV-MRMS samples
that are not affected by terrain blockage (Maddox et al. 2002) are
selected. Standard PMW-derived GPROF V05 surface precipita-
tion estimates from GMI sensor (2AGPROFGMI, GPROF here-
after; Kummerow et al. 2015) and IMERG V06 Early Run
(3IMERGHH; Huffman et al. 2020) product (IMERG hereafter)
are used for independent assessments. Undoubtedly, using Level
2 (swath-level) GPROF and Level 3 IMERG products will cause
uncertainty in the comparison results, but these two products are
selected as the most suited and well-known operational products
in our investigations.

Different datasets in this investigation have different spatial
resolutions and all are rescaled into gridded precipitation
products through bilinear interpolation while the nearest-
neighbor approach is used for resampling conical scanning
GMI footprints. To maintain consistency, we use the bilinear
interpolation method for upscaling and downscaling. It should
be noted that, while potential errors from bilinear interpola-
tions in the upscaling procedure could occur, their effect on
our analysis is insignificant and does not impact our overall
assumption.

3. Methodology

a. Data integration strategy for precipitation estimation

The training data for our proposed DNN algorithms consist
of geospatial information, surface types, IR Tbs from geosta-
tionary satellites, as well as PMW Tbs from GMI on the
GPM-CO satellite, all of which are collocated with GV-
MRMS observations. Our data preprocessing pipeline is
explained in four steps as below:

1) Extraction of GMI orbital tracks over the CONUS. PMW
Tbs, scan times (UTC), and granular scans from GMI
orbital tracks (L1CGMI files) over the study area are
extracted. Of these scans, the relevant information which
we utilize are geospatial locations, footprint latitude and
longitude, the number of swath scans in the granule, and
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the swath pixels per scan. These data are fetched from
NASA Goddard Earth Sciences Data and Information Serv-
ices Center (GES DISC) data archive on NASA’s Earth
Observing System Data and Information System (EOSDIS).

2) Collocation of GMI orbital tracks with the closest IR and
GV-MRMS data. The intersection of high temporal resolu-
tion GV-MRMS readings (2 min) with PMW footprints
within the time window of orbital tracks is found. The clos-
est IR image (30-min temporal resolution) is also matched
to the overpass of GMI scans to generate a stack of the IR
and PMW measurements and their corresponding GV-
MRMS observations.

3) Orbital swaths to gridded data conversion and resampling.
Gridded PMW Tb datasets are retrieved from orbital/
swath information with the nearest neighbor approach
(swath to grid). A data generation pipeline is applied that
converts the native GMI swath data (stored in HDF5) to
raster data (GeoTIFFs) using k-dimensional tree (k-d
tree; Bentley 1990) for fast nearest-neighbor search over a
large area (1108–608W and 208–508N). For this purpose,
“Pyresample” and “GDAL” packages are implemented
using Python. All the generated gridded datasets includ-
ing IR and GV-MRMS precipitation rates are resampled
to 4-km gridded data in this step.

4) Data patch generation for training DNN models. The col-
located GV-MRMS precipitation rates, GMI Tbs, and IR
Tbs samples (in our study for 2017 and 2018) are orga-
nized into 2.58 3 2.58 data patches (64 pixels 3 64 pixels).
These patches of data are normalized and partitioned into
the training, validation, and test periods. No-rain pixels are
identified using a 0.1 mm h21 threshold. To mitigate the
potential for imbalanced distributions of patches and to
ensure sufficient samples are supplied as inputs (rain events
are minority events), rainy data patches (i.e., at least one pixel
of 2.58 3 2.58 data patches have a rain rate of more than
0.1 mm h21) and nonrainy patches (i.e., there is not any rainy
pixel 2.58 3 2.58 data patches) are represented uniformly in
our training dataset (about 79400 data patches). It should be
noted that our DNN algorithms, due to their convolutional
and pooling layers, are flexible enough to process inputs of
variable sizes. Therefore, this step is used for training the
CNNs from scratch, whereafter they can accept inputs of any
size to estimate the precipitation rates.

Extreme memory resource utilization is one of the biggest
challenges in training DNNs with a large number of datasets.
The train-on-batch and generally on-the-fly learning techni-
ques are utilized for the efficient and fast training, mainly
implemented by Keras high-level libraries and the Tensor-
Flow platform. Furthermore, this training scheme can be used
to update a pretrained DNN model when new sets of data are
available. In our investigations, datasets are iteratively gener-
ated in parallel by multiple CPUs and then directly fed to the
GPU to train the DNN algorithms from scratch.

b. The architecture of precipitation estimation algorithm

CNN algorithms usually consist of a cascade of convolu-
tional layers that perform convolutional operations on the

data from the previous layers (Long et al. 2015). U-Net-like
models are popular types of deep CNNs that consist of a pair
of encoders and decoders for end-to-end learning and show
an impressive potential for segmentation and regression prob-
lems, even with a few numbers of training data (Ronneberger
et al. 2015; Goodfellow et al. 2016). In classical deep CNN
algorithms, a fully connected layer is usually designed at the
output layer, but the U-Net algorithms consist of fully convo-
lutional blocks; the encoder operates on the inputs to extract
fine-scale spatial features (downsampling step) then the
decoder constructs the high-level output patterns and pixel
values (upsampling step and regression). A convolutional
layer is designed to use the feature maps and complete an
image-to-image regression process in the last layer. Each
encoder consists of a filter bank with learnable parameters
(e.g., kernels and weights), then batch normalization and ele-
mentwise rectified linear unit (ReLU) activation function
[max(0, x)] are used to generate the feature maps (Nair and
Hinton 2010). The kernel’s receptive field’s size plays a key
role in capturing the neighborhood information, especially
when the spatial resolution is high. Batch normalization
removes the internal covariate shifts and trivial variance of
data batch distributions in the layers. Following that, max-
pooling is applied to reduce the dimensions and achieve trans-
lation invariance over small spatial shifts in the layer’s input
(maximum element in a window). After multiple downsam-
pling in the encoder part of the algorithm, robust features are
captured, but there is a loss of spatial resolution in data/image
especially in complex boundaries and gradients. So, it is
important to keep the detailed features before each down-
sampling and append them in the upsampling step of the net-
work. In the decoder, the feature maps are convolved with
decoder filter banks, followed by batch normalization, ReLU
activation function, and upsampling layers.

The unique property of the U-Net-like models is the skip
connections that append the fine-scale features from the
encoder blocks to the high-level feature maps in decoder blocks
that help the model to learn more efficiently and converge
much faster in the training stage. The skip connections also alle-
viate the vanishing gradient challenge in neural networks
(Ehsani et al. 2021). The connections in the U-Net model copy
and concatenate the original feature from each encoder block
to the corresponding decoder block that is effective to avoid
“loss of resolution” initiated by subsampling parts. Further-
more, U-Net-like architecture as a fully convolutional algorithm
is flexible in input size. In our study, the DNNs use 2.58 3 2.58
data patches and are compatible with any input size which is
very helpful for regional- and global-scale analysis (Akbari
Asanjan et al. 2018). Recently, for precipitation estimation,
some extensions from the CNN architecture have been pro-
posed, with the main difference that they are in the skip connec-
tions. Sadeghi et al. (2020) show the superior performance of a
U-Net architecture against classical CNN architectures without
shortcuts for near-real-time IR-based precipitation estimation.
Sun and Tang (2020) also recently investigated the perfor-
mance of an attention-based network, AU-Net, for learning
spatial and temporal mappings from coarse-resolution to fine-
resolution precipitation products and proved the potential of
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modifying skip connections in U-Net architecture for down-
scaling satellite precipitation. Figure 1 shows the schematic
architecture of the CNN models in this study. In our prelimi-
nary analysis, more than 200 DNNs with different U-Net-like
network structures and different input scenarios were tuned,
and we report the six top well-performed DNNs (Fig. 2), as
the proof of concept, in section 4. Since emission channels are
sensitive to moderate/heavy precipitation rates and scattering
channels are responsive to light precipitation rates over land
(J. Li et al. 2022), all GMI’s channels, except channels at
10.6V/H GHz, are included in our experiments.

In our study, the Tensorflow (2.2.0) platform and an adap-
tive learning rate method are used and employ the first and
second moments of the gradient to adapt the learning rate for
each weight of the neural network as its optimizer (Adam;
adaptive moment estimation). The cost function used in train-
ing the CNN model is the mean square error (MSE), the size
of 2D kernels is 5 3 5; the max-pooling and upsampling are
performed with 2 3 2 windows with the same padding option
(output has the same dimension as the input). Data prepro-
cessing, training, and parameter tuning of the model are car-
ried on Google Colab and an NVIDIA Quadro P6000 GPU.
Training time depends on the model size, batch size, and the
total number of epochs along with the availability of CPUs
for the custom data generator. After sensitivity analysis and
optimization of hyperparameters, 0.001, 32, and 75 are
selected for learning rate, batch size, and the number of
epochs, respectively. The experiments are carried out for 2017
and 2018. July 2017, November 2018, and Hurricane Harvey
(23–30 August 2017) were excluded for an independent test

purpose and then 80% and 20% of the dataset are utilized for
training and validation of the model, respectively. The reason
for selecting months of July and November is the GPM GV-
MRMS data availability (as the reference dataset provided by
NASA GHRC) with high-quality index values and to include
relatively warm and cold precipitation patterns in test periods.

c. Performance measurements

To assess the performance of satellite precipitation estimation
algorithms, the common categorical evaluation metrics including
probability of detection (POD), false alarm ratio (FAR), and
critical success index (CSI) are used which are defined as

POD 5
H

H 1 M
, (1)

FAR 5
F

F 1 H
, (2)

CSI 5
H

H 1 F 1 M
, (3)

where H (hit) indicates that both the precipitation model and
reference observation detect the event, M (miss) identifies
events captured by reference data but missed by the devel-
oped model, and F (false alarm) indicates events captured by
reference but not confirmed by the model. Following the con-
cept of categorical indices, we define volumetric hit index
(VHit), volumetric false alarm ratio (VFAR), and volumetric
critical success index (VCSI) as follows:

VHit 5

∑n
i51

Pi| Pi . thr & MRMSi . thr( )[ ]
∑n
i51

Pi| Pi . thr & MRMSi . thr( )[ ]
1

∑n
i51

MRMSi| Pi # thr & MRMSi . thr( )[ ] , (4)

FIG. 1. Illustration of convolutional neural networks, U-Net-like architecture, the encoder operates on the input data to extract robust fea-
tures (at left), then the decoder constructs the output patterns and pixel values (at right).
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VFAR 5

∑n
i51

Pi| Pi . thr & MRMSi # thr( )[ ]
∑n
i51

Pi| Pi . thr & MRMSi . thr( )[ ]
1

∑n
i51

Pi| Pi . thr & MRMSi # thr( )[ ] , (5)

VCSI 5

∑n
i51

Pi| Pi . thr & MRMSi . thr( )[ ]
∑n
i51

Pi| Pi . thr & MRMSi . thr( )[ ]
1

∑n
i51

Pi| MRMSi # thr & MRMSi . thr( )[ ]
1

∑n
i51

Pi| Pi , thr & MRMSi # thr( )[ ] ,

(6)

FIG. 2. Details of proposed DNN models. Models’ names (DNN 1–DNN 6) with their input layers are located on the left-hand side of each
panel. The red arrays indicate the skip connections in U-Net architecture.
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where Pi represents ith satellite precipitation estimates,
MRMSi refers to corresponding reference observations, and n
is the total number of data. The “thr” is the threshold above
which the VHI, VFAR, and VCSI are calculated. These cate-
gorical metrics are explained by AghaKouchak and Mehran
(2013). Continuous verification metrics such as Pearson corre-
lation coefficient (CORR), multiplicative bias (BIAS), and
root-mean-square error (RMSE) are also used to evaluate the
performance precipitation estimates:

CORR 5
1
n

∑n
i51

Pi 2 P
( )

MRMSi 2 MRMS
( )

������������������∑n
i51

Pi 2 P
( )2√ ���������������������������������∑n

i51

MRMSi 2 MRMS
( )2√ , (7)

BIAS 5
1
n

∑n
i51

Pi

MRMSi
, (8)

RMSE 5

���������������������������
1
n

∑n
i51

Pi 2 MRMSi( )
√

: (9)

d. Permutation feature importance

After selecting the best DNN algorithm (described in sec-
tion 3b), we name our proposed model Deep Neural Network
High Spatiotemporal Resolution Precipitation Estimation
(Deep-STEP). In the last part of our investigations, we exam-
ine which model’s inputs have the biggest impact on the per-
formance of the proposed precipitation estimation model.
The inspection approach is based on the study by Breiman
(2001) can be summarized in four main steps:

1) We consider the mean square error (MSE) score from the
Deep-STEP model as the metric of importance on the
testing and validation dataset (i.e., benchmark MSE).

2) In turn, each predictor is shuffled without changing other
predictors (inputs) and target precipitation rates.

3) Then, the altered datasets are given to the Deep-STEP
and the MSE scores are retrieved (i.e., permuted MSE).

4) The difference between the benchmark score and the per-
muted score for each altered input set is calculated.

The highest score difference is associated with the input set
with corruption applied to the most important predictor. Thus,
the highest score difference highlights which input contributes
the most to the Deep-STEP algorithm. To rank the importance
of inputs, the percentage of a performance change is defined as

Performance change %( ) 5 benchmark MSE 2 permuted MSE
benchmark MSE

3 100: (10)

4. Results and discussions

The proposed algorithms in our investigations are inspired
by U-Net-like architectures originally from medical image
segmentation studies that have been modified for pre-

cipitation estimation application (regression problem). We
tuned various combinations of hyperparameters (number of
kernels, number of hidden layers, etc.) with different input
datasets and learning variables to select the final algorithm of
our set of architectures. After sensitivity analysis and optimi-
zation of hyperparameters, we selected 0.001 and 32 for learn-
ing rate and batch size, respectively. The performances of the
six DNN precipitation models (named DNN 1–DNN 6) are
reported for data covering the month of July 2017, as the
proof of concept. Figure 2 indicates the designed models
while Fig. 3 shows their corresponding performances at half-
hourly temporal scales with reference to GV-MRMS data.
These plots demonstrate the common statistical metrics for
precipitation rates more than 0.1 mm h21 over the study area.
IMERG and GPROF products show 0.36 and 0.49 correlation
coefficients with the GV-MRMS precipitation observations,
respectively, whereas all our proposed DNNs show higher
correlation values (more than 0.53). GPROF has the highest
rate in the probability of detection (0.82) followed by DNN 2
and DNN 1 models. In terms of FAR, DNN 2 and DNN 6
achieve the best performance among all the models, 0.45 and
0.41, respectively. In terms of CSI, which can be considered
an overall detection skill, again DNN 2 and DNN 6 architec-
tures perform better compared to others, despite slight over-
estimation in the total amount of precipitation by 23% and
19%, respectively. The results for volumetric metrics demon-
strate that 91% of the volume of observed precipitation is cor-
rectly detected by DNN 2, similar to the GPROF algorithm
with VHit rates of 92%. VFAR shows that false precipitation
rates in the proposed models are below 17% of the total vol-
ume of rainfall with respect to GV-MRMS reference data.
DNN 2 is also superior to all algorithms in terms of VCSI
(0.79) that provides the general volumetric performance of
models associated with the volume of hit, false, and missed
components of capturing precipitation. It should be noted
that several experiments (input combinations, architectures,
etc.) were assessed in the test period to choose the best model
that reveals the best agreement with reference data over our
study area. Statistics are just reported for July 2017 and a
comparison between various DNN structures and different
input combinations reveal that DNN 2 consistently exhibited
better performance throughout the whole test period. DNN 2,
hereafter referred to as Deep-STEP, utilizes PMW Tbs (from
19V/H to 183 6 3V and 183 6 8V GHz GMI channels), IR Tbs
(∼10.7 mm), and surface type information as inputs of the model.

Table 2 demonstrates the precipitation estimation statistics
of our best DNN model (Deep-STEP) benchmarked against
MRMS and shows a valuable comparison between IMERG,
GPROF, and Deep-STEP algorithms for July 2017 and
November 2018. A threshold of 0.1 mm h21 is used to distin-
guish between rainy and nonrainy events. In July 2017 (warm
month), Deep-STEP shows the best performance compared
to IMERG in both categorical and volumetric indices, while
GPROF slightly outperforms Deep-STEP in terms of POD,
BIAS, and RMSE by 0.11, 0.21, and 1 mm h21, respectively.
Overall, Deep-STEP, which employs an end-to-end CNN,
performs substantially better compared to well-known opera-
tional algorithms in the warm testing period. The evaluations
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conducted over November 2018, show that retrieving precipi-
tation is challenging for satellite algorithms in the cold testing
period (November 2018). However, Deep-STEP retrievals
show a high correlation with the reference data (CORR 5

0.71) along with relatively low BIAS and low RMSE, 0.93 and
0.80, respectively. Concurrently, IMERG’s CORR of 0.48,
BIAS of 1.20, and RMSE of 1.23 mm h21 show that this
model experiences more severe overestimations compared to
GPROF’s CORR, BIAS, and RMSE values of 0.53, 1.08, and
1.05 mm h21, respectively. Table 2 manifests that there are
negligible differences in categorical detection skills of precipi-
tation algorithms, while Deep-STEP is superior to other prod-
ucts in general volumetric indices with VCSI and VFAR
values of 0.72, and 0.11, respectively.

Despite the usefulness of the general evaluations presented
in the previous section, assessing precipitation retrievals for
different surface classes at high temporal resolution shows the
improvements obtained by our developed model (Deep-
STEP) with respect to operational algorithms (IMERG and
GPROF).

a. Performance of precipitation algorithms over different
surface types

Figures 4 and 5 show scatterplots of each surface precipita-
tion product (y axis) versus GV-MRMS observations (x axis)
for July 2017 and November 2018, respectively. These plots
demonstrate the precipitation rates between the satellite-
based estimates and the reference data for precipitation rates

FIG. 3. Statistical indices for precipitation models (named DNN 1–DNN 6) for choosing the best DNN model (Deep- STEP).
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more than 0.1 mm h21 over the study area. It should be men-
tioned that the GPROF algorithm uses GPM DPR products
in its a priori database over all surface types (14 surface clas-
ses mentioned in section 2), except for snow and ice-covered
areas, where GV-MRMS snowfall retrievals are used. In our
investigations, the snow and ice surface types are not consid-
ered in training the Deep-STEP model. Thus, the precipita-
tion retrievals with assigned snow and ice surface conditions
(GPM surface classifications used in GPROF products) and
their corresponding (time and space matched) precipitation
estimates from GPROF, IMERG, and Deep-STEP were
removed from our assessments.

Figure 4a shows that Deep-STEP and GPROF are 0.55 cor-
related to the GV-MRMS observations over the ocean and
large inland water bodies, while IMERG shows less correlation
with the value 0.36 for this surface class. In terms of multiplica-
tive bias, the precipitation algorithms perform similarly over
oceans and large inland water bodies with values ranging from
1.04 to 1.09 in the warm month (July 2017). We can see that
the average BIAS values significantly increase for IMERG and
GPROF retrievals in the cold month (November 2018) over
this class. Over inland water bodies/rivers/wetland category,
Deep-STEP outperforms IMERG and GPROF products in
the warm month (Fig. 4b) and the Deep-STEP’s performance
is also notable compared to other products during the cold
month (Fig. 5b). Figures 4c and 5c clearly demonstrate that
Deep-STEP is skillful in capturing precipitation over complex
coastal regions for both warm and cold months. Since coastal
surfaces are not homogenous nor captured well with the coarse
resolution PMW footprints (mixed land and water pixels),
IMERG and GPROF do not perform skillfully over these
regions. It should be noted that the scatterplots of GPROF
estimates versus GV-MRMS product show bimodal features
over land and water boundaries surface type. However,
such distribution is not vivid for IMERG and Deep-STEP
retrievals. A similar bimodal distribution is also reported
by Utsumi et al. (2020) and You et al. (2020). In our investi-
gations, the overlap of IR images and various PMW chan-
nels enhances both the spatial resolution and the accuracy
of precipitation retrievals (Petty and Bennartz 2017).

It is worth mentioning that precipitating clouds over large
water bodies in low-frequency PMW channels (,37 GHz)
show radiometric “warming” parts (i.e., a higher equivalent
blackbody Tb, compared to the precipitation-free back-
ground) against the radiometrically “cold” water background.
High-frequency channels (.37 GHz) respond to the amount
of precipitation-sized hydrometeors (depth and density)
through a radiometric “cooling” (i.e., lower Tbs with respect
to the background) owing to the scattering of the upwelling
emission from the rain. Therefore, by using low- and high-fre-
quency PMW channels with high-resolution IR images, our
model has performed very well over water bodies. Over our
study region, the areas of densely vegetated land sharply
increase eastward (from 958 to 608W longitude), and in this
part of the assessments, we regrouped the four decreasing
vegetation covered surface types (types 3–6) into vegetated
land (types 5 and 6) and arid land (types 3 and 4) groups. As
shown in the scatterplots in Figs. 4d and 4e, Deep-STEP over-
estimates the precipitation rates with CORR values of 0.64
and 0.67 over vegetated and arid land classes, respectively.
At the same time, GPROF (with lower CORR values than
Deep-STEP) slightly underestimates and overestimates the
precipitation over vegetated and arid surfaces, respectively. In
November 2018, precipitation retrievals over vegetated and
arid land surface types (Figs. 5d,e) are generally more corre-
lated to observations compared to July 2017. Specifically,
CORR values increase by 0.11, 0.15, and 0.20 for Deep-STEP,
GPROF, and IMERG retrievals over vegetated land class,
respectively. By examining the precipitation scatterplots
over arid surface type for November 2018, one can see that
Deep-STEP and IMERG slightly underestimate light rain-
fall events while they overestimate the moderate and heavy
precipitation rates (.1 mm h21). GPROF shows a rela-
tively poor performance (mostly underestimation) over
arid areas with the general multiplicative bias of 0.88 that
was expected due to the low variations in radiometric Tbs
over land.

The performance of high spatiotemporal resolution satellite
precipitation algorithms in detecting spatial patterns are
important in disaster management, flood warning systems,

TABLE 2. Statistical performance of the retrievals in July 2017 and November 2018: correlation (CORR), root-mean-square error
(RMSE), multiplicative bias (BIAS), probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), volumetric hit
index (VHit), volumetric false alarm ratio (VFAR), and volumetric critical success index (VCSI). Best performance is highlighted in bold
font in each test period.

July 2017 November 2018

Metrics\model Deep-STEP GPROF IMERG Deep-STEP GPROF IMERG

CORR 0.61 0.49 0.36 0.71 0.53 0.48
POD 0.71 0.82 0.70 0.51 0.68 0.55
FAR 0.45 0.63 0.53 0.46 0.55 0.41
CSI 0.45 0.34 0.39 0.35 0.36 0.39
BIAS 1.23 1.02 1.03 0.93 1.08 1.20
RMSE (mm h21) 1.20 1.19 1.38 0.80 1.05 1.23
VCSI 0.79 0.71 0.63 0.72 0.71 0.70
VFAR 0.14 0.24 0.26 0.11 0.19 0.17
VHit 0.91 0.92 0.82 0.78 0.86 0.82
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FIG. 4. Scatterplot of surface precipitation retrievals for Deep-STEP, IMERG, and GPROF vs GV-MRMS precipitation rates
over (a) ocean/large inland water bodies (surface type 1), (b) inland water bodies/rivers/wetlands (surface type 12), (c) coastlines
and land/water boundaries (surface type 13), (d) vegetated land, and (e) arid land (decreasing vegetation covered: surface
type 35Amazon-like, surface type 75 Sahara Desert–like), July 2017. The color bar displays the number of cases.
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FIG. 5. As in Fig 4, but for November 2018.
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FIG. 6. Case study (I) over Oklahoma, northern Texas, and eastern Arkansas
and Louisiana at 1240 UTC 5 Jul 2017: (a) surface type and infrared (IR) informa-
tion, (b) 19V GHz (PMW band 3) and 23V GHz (PMW band 5), (c) 37V GHz
(PMW band 6) and 37H GHz (PMW band 7), (d) 89H GHz (PMW band 9) and
166V GHz (PMW band 10), and (e) 166H GHz (PMW band 11) and 183H GHz
(PMWband 13) channels fromGMI.
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short-term weather predictions, and many more applications.
With the aforementioned assessments over different surface
types, we now examine two extreme precipitation events over
our study area.

b. Visualization of precipitation retrievals over event I

Figure 6 presents a visualization of input information for
the Deep-STEP model during an extreme precipitation event
on 5 July 2017. This event was captured by the GPM GMI
radiometer while occurring over Oklahoma, northern parts
of Texas, and eastern parts of Arkansas and Louisiana
states. Figure 6a shows the surface types (retrieved from
GPM surface classification scheme) and IR image (∼10 mm)
from GOES ABI. The surface types over this area are
mainly vegetated land (surface type 3 and 4 from GPM sur-
face classification scheme) and low cloud-top temperatures
(emitted radiances) with cloud boundaries can be seen in
the longwave IR image. The blue color in the IR image
shows colder cloud tops and the possibility of rainfall, but
it cannot exactly illustrate the location of precipitation
beneath the clouds. Figures 6b and 6c illustrate the 19V,
23V, 37V, and 37H GHz equivalent blackbody Tbs

over this area. We can see that over land due to the radio-
metrically warm background, the low frequencies alone are
not sufficient to detect precipitating clouds. However, high-
frequency PMW measurements more effectively discriminate
between the presence of rainy regions and land surface with-
out precipitation (Figs. 6d,e). Figure 7 displays a visual com-
parison between precipitation estimates from Deep-STEP,
GPROF, and IMERG algorithms and GV-MRMS reference
data. Deep-STEP provides a realistic representation of the
spatial patterns of surface precipitation rates. Meanwhile, simi-
lar patterns are vaguely observed by GPROF due to limita-
tions of coarse resolution PMW footprints. IMERG misses the
entire spatial pattern of this event and underestimates the
heavy precipitation rates over 25 mm h21. IMERG also does
not perform well in deriving the spatial patterns and the
amount of lighter rain rates (,25 mm h21) compared to other
algorithms. Deep-STEP proves its ability to derive precipita-
tion rates over land by fusing IR images, emission, and scatter-
ing PMW frequencies. Deep-STEP offers the capability of
data fusion and automatic neighborhood feature extraction
(with CNNs) to enhance the spatial resolution of PMW-based
precipitation retrievals over land.

FIG. 7. Surface precipitation retrievals for case study (I) from (a) GV-MRMS, (b) Deep-STEP, and (c) GPROF,
and (d) IMERG, from 1230 to 1300 UTC 5 Jul 2017, over Oklahoma, northern Texas, and eastern parts of Arkansas
and Louisiana.
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FIG. 8. Case study (II) Hurricane Harvey over the northern Gulf States at 1046
UTC 30 Aug 2017: (a) surface type and infrared (IR) information, (b) 19V GHz
(PMW band 3) and 23V GHz (PMW band 5), (c) 37V GHz (PMW band 6) and
37H GHz (PMW band 7), (d) 89H GHz (PMW band 9) and 166V GHz (PMW
band 10), and (e) 166H GHz (PMW band 11) and 183H GHz (PMW band 13)
channels from GMI.
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c. Visualization of precipitation retrievals over event II

Figure 8 displays samples for IR Tbs, PMW Tbs from 19V
to 166H GHz channels along with surface type information as
inputs of the Deep-STEP over Hurricane Harvey. Hurricane
Harvey stalled over Texas on 26 August and moved toward
the east until its landfalls on 30 August 2017. GPM-CO satel-
lite overpassed this event over the coastline (near Cameron,
Louisiana) on 30 August at 1357 UTC. The IR Tbs clearly
captures the cold cloud tops in this convective system and the
IR channel allows us to observe rainy clouds directly. GMI
PMW observations vividly illustrate the difference between
the radiometrically warm land and cold ocean in the low-fre-
quency channels (Figs. 8b,c). The low-frequency PMW chan-
nels are sensitive to small- and medium-sized droplets while
the presence of hydrometeors and precipitating parts of the
clouds (low Tbs) can be more clearly observed in GMI high-
frequency channels (Figs. 8d,e) over land and coastal areas.
We can see that from emission frequencies (37 GHz.) chan-
nels, energy leaving from the land surface is about the same
magnitude as from precipitating parts of the clouds, whereas
the scattering frequencies (37 GHz,) more clearly distinguish
precipitation signatures from land. By comparison, the precip-
itation signals from clouds are distinctly revealed over the

ocean in both emission and scattering channels. Figure 9 pre-
sents the spatial extent of Deep-STEP precipitation retrievals
over this event compared to the reference GV-MRMS data-
set, IMERG, and GPROF products. Deep-STEP adequately
captures the spatial patterns of high surface precipitation rates
(.25 mm h21), but it slightly overestimates the precipitation
rates less than 10 mm h21 over northern parts of the hurri-
cane. GPROF and IMERG do not detect spatial variability of
precipitation, especially over the center of the hurricane.
Clearly, GPROF and IMERG’s coarse resolution retrievals
limit their abilities to recognize the fine spatial details of rain-
fall over the coastal surface types, while Deep-STEP takes
advantage of fusing IR images with PMW information to
retrieve precipitation in high spatial resolution.

Last, we would like to mention that after obtaining the
coincident precipitation estimations from Level 3 IMERG
Early Run and standard Level 2 GPROF, we can see that
IMERG retrievals are different from GPROF in both visual
and statistical comparisons. Considering that near-real-time
(NRT) GPROF is one of the merged algorithms in the
IMERG framework, the uncertainty of IMERG product at
early run is very high at half-hourly temporal resolution
(Huffman et al. 2020). In general, the discrepancies between
IMERG and GPROF retrievals during a half-hour window

FIG. 9. Surface precipitation retrievals for case study (I) from (a) GV-MRMS, (b) Deep-STEP, (c) GPROF, and
(d) IMERG, from 1030 to 1100 UTC 30 Aug 2017, over Hurricane Harvey.
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might be caused by different PMW sensors overpasses at one
spatial location, gridding, intercalibration, and morphing the
PMW data in the IMERG system.

d. Permutation feature importance

After evaluating the performance of the Deep-STEP
model, we investigate the importance of inputs to the model.
As described in section 3d, our approach is to break the rela-
tionship between each input and the target precipitation to
determine how much the model is reliant on the input. When
an input is shuffled, the MSE score increases (bad perfor-
mance of the model) which results in a large difference
between permuted MSE value and the benchmark score.
Larger gap between the original model MSE and altered
input MSE indicates the high dependency of the model on the
corresponding shuffled input. The benchmark MSE for our
study period is 1.57 mm2 h22 and by corrupting the structure
of each input, we observe a boost in the MSE values. Figure
10 shows the permuted MSE as the percentage variation from
the benchmark MSE. Among the inputs, the PMW 36.6V/H
GHz channels, as emission frequency bands, followed by
89V/H GHz channels, as scattering frequency bands, are the
most important inputs for the Deep-STEP model with more
than 65% change in the performance. The results indicate
that the model is also dependent on PMW Tbs from 183.3 6

7V, and 166H GHz, and 18.7H GHz bands with about 57%,
50%, and 47% performance change, respectively.

It should be noted that in our investigations the inputs are
intercorrelated. Thus, when a single input (highly correlated
features) is shuffled, the Deep-STEP extrapolate to unknown
regions of the feature space, and the model might overempha-
size the performance variations (e.g., PMW band 6 and 7 in
Fig. 10). This part of the study is an example for DNN inter-
pretations and there exist advanced permutation importance
approaches to get a better understanding of physical connec-
tions and interpretability of models (Hooker et al. 2021).

Since the future direction of our investigation is the globe
implementation of the Deep-STEP model by using PMW sen-
sors in the GPM constellation, a broader analysis will be
needed for important inputs selection.

5. Conclusions and future directions

The present study explores the application of CNN archi-
tecture to ingest coarse spatial resolution PMW footprints
with IR Tbs and surface type for high spatial resolution sur-
face precipitation estimation. Emission and scattering chan-
nels from the GMI sensor on board the GPM-CO satellite are
directly integrated with GEO-based IR images, and of our set
of architectures, we select the best CNN algorithm (referred
to as Deep-STEP). Deep-STEP is trained with GPM GV-
MRMS surface precipitation rates. Our proposed end-to-end
Deep-STEP model is trained using advanced on-the-fly learn-
ing techniques that mitigates the significant computational
requirements. The CNN model architecture automatically
extracts cloud features and translates them into surface pre-
cipitation maps at 4-km spatial resolution. The proposed
model is investigated over the eastern CONUS and its precip-
itation retrievals are compared with the well-known GPROF
and IMERG products. We evaluated the performance of
these algorithms based on continuous verification metrics
(e.g., correlation coefficient, multiplicative bias), categorical
and volumetric indices (e.g., CSI, FAR, VCSI, VHit). It
should be noted that our model is trained and tested with
respect to GV-MRMS surface precipitation rates as reference.
Thus, Deep-STEP is at an advantage compared to the
GPROF and IMERG products that are trained with GPM
AMW retrievals but evaluated against the GV-MRMS
product.

The results are assessed over different surface types, and
the permutation feature importance of our proposed

FIG. 10. Permutation importance for Deep-STEP. Performance change indicates the dependency
of the Deep-STEP on the corresponding input.
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precipitation estimation model is also examined. The main
findings are summarized as follow:

• The proposed Deep-STEP model shows a promising oppor-
tunity for developing an end-to-end multisensor multisatellite
surface precipitation retrievals algorithm. According to our
experiments over half-hourly temporal scales, retrieved pre-
cipitation from the proposed Deep-STEP algorithm shows
higher correlation values with the reference precipitation
product compared to GPROF and IMERG models. Specifi-
cally, Deep-STEP precipitation estimates during cold months
are more highly correlated with reference precipitation rates
compared to warm months.

• Based on our analysis, Deep-STEP outperforms GPROF
and IMERG in terms of overall verification metrics. Though
Deep-STEP slightly overestimates the total amount of precip-
itation during warmer test periods, it marginally underesti-
mates precipitation rates in colder test periods. In general,
the Deep-STEP model shows significant improvements due
to its leveraging of two different sources of passive remotely
sensed data (PMW and IR spectrums).

• Our comprehensive evaluations show that the Deep-STEP
algorithm is superior to GPROF and IMERG algorithms in
capturing high spatiotemporal resolution precipitation rates
over complex surface types such as coastal regions while it
slightly overestimates light and moderate precipitation
rates over arid and vegetated surfaces.

• Using low spatial resolution PMW footprints with many
auxiliary variables limits the performance of process-ori-
ented satellite precipitation algorithms in capturing pat-
terns of precipitation. The performance of our proposed
Deep-STEP model over extreme precipitation events high-
lights the promises of extracting relevant fine-scale precipi-
tation features by fusing coarse-resolution PMW informa-
tion with IR images.

• Last, the results from the permutation feature importance
analysis support the idea that the main source of informa-
tion for retrieving precipitation rates in our proposed
framework comes from PMW sensors. Our investigations
show that PMW channels at 36.6V/H and 89V/H GHz fre-
quencies are the most important inputs to the Deep-STEP
algorithm, and by incorporating IR images they collectively
enhance the spatial detection of precipitation.

Overall, we show the effectiveness of fusing a set of Tbs
from coarse-resolution PMW footprints with IR images and
using an end-to-end algorithm with an automatic neighbor-
hood feature extraction approach to capture the fine spatial
patterns of precipitation events. However, a broader statisti-
cal analysis for spatial and temporal variations is needed to
draw more comprehensive conclusions. We anticipate our
CNN-based model to be a starting point for more sophisti-
cated and efficient high spatial resolution precipitation
retrieval systems, both in terms of accuracy and in computa-
tional cost. It is important to acknowledge the fact that while
Deep-STEP offers modest performance improvements over
the state-of-the-art highly specialized operational algorithms,
these consistent improvements should be considered from the

perspective of their relative computational cost-effectiveness.
Our model offers improved performance at a computational
cost that is many orders of magnitude lower than operational
satellite precipitation algorithms, and this translates to a highly
effective, highly accessible system that is capable of achieving
better or even similar results. The future extension of the
Deep-STEP will be mainly training and validating our proposed
scheme using the GPM DPR precipitation product as a refer-
ence dataset on a global scale. The Deep-STEP should be
applied on GPM PMW sensors, both imagers and sounders, to
alleviate the limited spatiotemporal data coverage from LEO
satellites and to provide global-scale high spatiotemporal reso-
lution precipitation retrievals (e.g., 4-km spatial and 3-hourly
temporal resolution). One of the challenges for global imple-
mentation will be adapting Deep-STEP to each radiometer in
the GPM constellation, due to variation of PMW channels, inci-
dence angles, spatial and temporal resolutions, and many more.
Addressing this challenge requires further investigation. More-
over, a detailed analysis on the importance of PMW spectral
windows (similar to our experiments in section 4d) from the
revolutionized constellation of small radiometers (Stephens
et al. 2020), which mostly operate at high PMW frequencies
could lead to interesting studies in the future.
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